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(IP), and Explosion (X) are powerful new rules for natural deduction.
They are powerful because they offer an entirely new strategy for
proofs. Even proofs we have been doing without them can be done
with these new rules, and sometimes faster. Using them models an
argument strategy which is at least as old as Socrates, who used it
often. It is called Reductio ad Absurdum, or “reduction to absurdity.”

In conversation, philosophers some-
times abbreviate the Latin name and
call an argument of this form a “re-
ductio” for short, as in “Doesn’t that
observation offer an easy reductio of his
claim?”

The reasoning at the core of every Reductio ad Absurdum argument
is this: if you can derive a contradiction from some claim, then you
have shown that that claim is False.

For instance, when Socrates uses Reductio ad Absurdum, he typi-
cally derives a contradiction between his interlocutor’s claim and one
of the interlocutor’s other beliefs. Socrates asks Hippias what makes This occurs in Plato’s dialogue Hippias

Major which is about what’s kalon, or
“fine.” Here I am translating kalon as
“beautiful.”

things beautiful. Apparently without thinking carefully, Hippias
replies “covering them in gold.” Socrates asks if Hippias thinks a
beautiful woman is beautiful, and of course Hippias agrees. Socrates
asks if covering a beautiful woman in gold makes her more beautiful,
and Hippias acknowledges that it does not. But since Hippias’s first, This unsettling image was explored in

detail by Guy Hamilton (1964), http:
//www.imdb.com/title/tt0058150/

hastily-expressed claim entails that for anything, covering it in gold
makes it more beautiful, he must accept that covering a beautiful
woman in gold makes her more beautiful. He is therefore committed
to a contradiction: that it does and does not make her beautiful. Since
contradictions cannot be True, he is committed to a False belief. He
can avoid holding this False belief by allowing that his original claim
was False.

Learning how to find and expose contradictions yields a useful
intellectual skill, and using the negation rules on symbolized argu-
ments should help you internalize that skill.

But moreoever, what makes Reductio ad Absurdum arguments so
powerful is that they can be used to prove the conclusion of any valid
argument, even when the given premises do not entail a contradic- This strategy is called “indirect proof,”

as opposed to direct proof, which is
just the usual strategy not involving
contradictions.

tion.
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If you are trying to prove a negated sentence (e.g., ¬P)—whether
it is the conclusion of the argument or just a sentence you need to
prove along the way—you can always assume the unnegated version
of that sentence (e.g., P), derive any contradiction, flag the contra-
diction with a contradiction symbol (⊥) using ¬E, discharge the
assumption, and conclude the negated sentence (e.g., ¬P). Your jus-
tification is the entire subproof and the rule ¬I (as shown top right).
How you reach the contradiction is not important, other than that
you follow the rules of TFL! Similarly, if you’re trying to prove an un-
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negated sentence (e.g., P), assume its negation (e.g., ¬P), and follow
the same strategy, seeking a contradiction, then using the rule IP.

Happily, this strategy often makes proofs shorter. But not always.
Sometimes they’re longer. Yet, it always works. So if you don’t see a
direct route to some conclusion or subgoal, it may be worth a try. But
why are ¬I and IP acceptable? And why do they always work?

How the negation rules work

You may have noticed the resemblance between ¬I/IP and→I, in
that both rules use subproofs. That similarity reveals why ¬I is jus-
tified. When you use ¬I, you are essentially proving a conditional
sentence of the form P→⊥. We don’t actually write that conditional,
but look at the subderivation and you’ll see that you could if you
wanted to.

Now think about that conditional sentence with the form P→
⊥. Its consequent is a contradiction. A contradiction is simply, by
definition, a sentence which is never True, for logical reasons. So, we
know that it is a True conditional sentence with a False consequent.

A B A→ B

T T T
T F F
F T T
F F T ←

Now what does that tell us? Look at the truth table for the condi-
tional. Remember that the rows of the truth table describe cases or
scenarios. Which case are we in? We’re in a case where the conse-
quent of the conditional is False. That focuses our attention on rows
2 and 4. But we also know that the conditional is True, and that rules
out row 2 where the conditional is False. So, we must be on row 4. In
the case row 4 describes, the antecedent is False. So, it must be False.

And that makes the case: the antecedent we’ve shown False is the
sentence assumed at the top of the subproof, P. Since we’ve shown
it’s False, we can negate it! ¬P.

P Q P→(Q∧¬Q)

T T F
T F F
F T T ←
F F T ←

Alternatively, instead of thinking about the truth table of the con-
ditional in general, let’s examine the truth table of P→⊥. In using ¬I,
you show that a sentence with the structure P→⊥ is True. So, look at
its truth-table. Under what circumstances is it True? Just row 2. So,
it’s True exactly whenever P is False. So, that is: ¬P!

P ⊥ P→⊥

T F F
F F T ←

Why the negation rules always work

In a deductively valid argument, it’s impossible for the premises to
all be True and the conclusion False. Saying that the conclusion is
False is the same as negating it. So, the premises must not be jointly
possible with the negated conclusion. If they jointly impossible, they
must involve a contradiction. So, for a valid argument, a contradic-
tion can always be derived from its premises and the negation of its
conclusion.


